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The growth rate of the instability in the lowbitron [ Appl. Phys. Lett. 39, 845 (1981) ]—the
longitudinal wiggler beam interaction device—is shown to be enhanced significantly by the use of

a coherently gyrophased electron beam.

I. INTRODUCTION

The lowbitron—a longitudinal wiggler beam interac-
tion device—has been suggested by scientists at MIT' as an
attractive source of intense submillimeter radiation. A thin
pencil beam of relativistic electrons with large transverse
velocity acquired before entering the interaction region tra-
vels on axis in combined uniform magnetic field and longitu-
dinal periodic wiggler magnetic field. The equilibrium distri-
bution function of the electrons is usually assumed to be
randomly gyrophased and to depend only on p, and p,, the
perpendicular and parallel electron momenta. The use of a
coherently gyrophased beam instead of the randomly gyro-
phased beam in the interaction with a uniform axial magnet-
ic field was shown theoretically to increase the growth rate of
the instability.*> Recently a successful generation of such a
beam using electrostatic fields was reported. The device em-
ploying such a new type of beam was named the wiggler-free
free electron laser. Our purpose in this paper is to show that
the use of a coherently gyrophased beam substantially in-
creases the gain also in the lowbitron.

In Sec. II we write the Maxwell-Vlasov equations for an
electron beam of an arbitrary gyrophase distribution propa-
gating along a parallel stratified magnetic field. In Sec. III
we apply these equations to two cases. The first is a uniform
magnetic field (the cyclotron maser instability and the
wiggler-free free electron laser instability) and the second is
the spatially periodic magnetic field (the lowbitron).

tl. DERIVATION OF THE GOVERNING EQUATIONS

Consider an electron beam that propagates along an ex-
ternal static magnetic field of the approximated form
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The electron beam is tenuous so that the static self-fields are
negligible in comparison with the external magnetic field.
The radial dependence of the various quantities in the system
is assumed to be negligible also. The constants of motion
of the electron are p,,p,, and ¢ —efB/cp,, where
¢ =1g""(p,/p,) is the gyrophase, — e is the electron
charge, and c is the velocity of light in vacuum. Upon enter-
ing the interaction region at z = 0 the electron distribution
function is denoted as G(p, ,p,,#). Along the interaction re-
gion the equilibrium distribution function f; is related to G
via
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The electron beam interacts with an electromagnetic wave
whose electric field E; and magnetic field B are

= G{p,.p,.¢ — (e/cp, ) [B(2)

E; =E(z)e ™, B =B(z)e . 3)
The electron distribution function is approximately
f=f+filpp..bz)e” ™", 4)

where f is a solution of the linearized Vlasov equation
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where m is the electron mass, = 1 4 (p} + p?/m?c?),and

v = p/my. Fourier decomposing f, and f; with respect to
the gyrophase ¢,

fo= 3 b2, fi= 3, A, (pp.0e™, (6)
and substi'tuting these expressions in Eq. (5) we obtain the following equations for the coefficients 4, :
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The complex components of a vector F are F_ = (1/42)
X (F, + iF,). If f; is zero at the entrance, the solutions of
Egs. (7) are

A, = f dz ( iwAz
where Az=z—7z, Ay=y(2) —y(Z'), and y(z) is
eB /(cp,). The perturbed current J and density p are deter-

mined by 4, ,, A_,, and 4, only. The current components
J . and the density p are
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At this stage we choose the equilibrium distribution
function at the entrance G to be of the form

G=Ny/(2mp,)6(p, —Pp.10)0(p, —P)8(#) . (10)

The constant N, is the equilibrium electron density. The per-
pendicular and parallel momenta of all the electrons are of
the same magnitude, but the gyrophase angle is arbitrary. By
using Egs. (2) and (6) we obtain the following relations
between the Fourier components of f; and g:

¢, = No/2mp, Yexpl — iny(2)]
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where g(¢) = 22_ _ _ g, exp(ing). With the above form
of the coefficients c,, the integrations in the momenta space
in Eq. (9) are performed in a straightforward manner. The
currents and the density are thus
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and the zero subscripts have been omitted from p,q, P, V10,
V0» Yo» and Yo In the definitions (13) we redefine v as the
ratio of the electron velocity to ¢, and define
w? = 4wNoe®/ (mc?). Other new notations are

s =E_e*¥ b, =B _e** a,=E . (14)
Substituting the expressions (12) into the Maxwell equa-
tions we obtain a set of integrodifferential equations for
a,, a,andb . However, upon defining the new quanti-
ties
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the integrodifferential equations become the following sys-
tem of thirteen first-order ordinary differential equations:
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This system of equations with appropriate boundary condi-
tions fully describes the interaction.

lil. APPLICATIONS
A. The wiggler-free free electron laser

The problem is determined by specifying the form of the
equilibrium magnetic field. An important case is when the
equilibrium magnetic field is constant:

apg
=B
dz o

An analysis, similar to the present one, was carried out re-
cently for this special case.®> An instability occurs for waves
at the frequency

o=Q/y(1 —-v,), (18)
where ) is the cyclotron frequency eB,/(mc). When the
beam is randomly gyrophased, i.e.,

g&%=1 g.=0 n#0, (19)

the instability is reduced to the cyclotron maser instability.
However, a much higher growth rate is found when the
beam is coherently gyrophased:

= const. (17
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FIG. 1. Plot of normalized growth rate k,/k, vs w/k, for y = 2, v, = 0.86,
v, =0.1,0,/k=0258=1/3.(1) O/ (vky) = 4.64; the first harmonic is
mostly unstable. (2) 1/ (yk,) = 10.84; the third harmonic is mostly unsta-
ble. (a) randomly gyrophased beam, (b) coherently gyrophased beam.

g, =1, Vn; (20)

this corresponds to the wiggler-free free electron laser.

B. The lowbitron

We now apply this analysis to the lowbitron. The equi-
librium magnetic field is

‘;—B=Bo[l+85in(koz)]. 1)
'z
The resonant frequencies are

o= (Vy+nkp,)/(1-1v,), (22)

where n is a positive integer. The interaction was studied
previously’~ for a randomly gyrophased beam of the form
described by Eq. (19). The present analysis enables us to
study the interaction of an arbitrarily gyrophased beam. We
study in particular the coherently gyrophased beam of the
form (20) and compare the growth rates of the instability for
the two different types of beam. The problem we solve is the
initial value problem. Given the values of the 13 unknowns
at z = 0 we calculate their values for z> 0. We find that the
growth rate of the instability is substantially larger when the
coherently gyrophased beam is used than when the random-
ly gyrophased beam is used.

In order to demonstrate the gain enhancement caused
by the use of the coherently gyrophased beam, we give two
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numerical examples. The growth rate of the instability is
shown versus the frequency for the first harmonic and for the
third harmonic. The parameters are the same as those in Ref.
3 and are chosen to maximize the growth rate for the first
and third harmonics. The initial values of all the unknowns
in Eq. (16) were set equal to zero except that of a. The
system of equations (16) was solved numerically in the do-
main 0 <2<200X 27/k,. The growth rate k; is defined as

_ d(a*-a)/dz

23
2(a*-a) (23)

I 4

We emphasize that even at the end of such a long interaction
region several modes are coupled and the growth rate is not
constant. Its value oscillates around some mean value, which
is shown in Fig. 1. We see that in both cases the gain is
enhanced by the use of the coherently gyrophased beam. For
the first harmonic the maximum growth rate is increased by
36% and for the third harmonic by 21%%.

The increased gain resulting from the use of a coherently
gyrophased beam is due to the fact that usually the colder a
beam is, the more unstable it is. A coherently gyrophased
beam has zero temperature and is actually a cold fluid. The
random gyrophase, similar to the thermal spread in other
devices, reduces the gain.

In conclusion, the use of a coherently gyrophased beam
is shown to substantially enhance the gain in the lowbitron.
Since this beam is a crucial component in the wiggler-free
free electron laser also, an effort to generate such a beam
should be further encouraged.
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